Good morning! I’m feeling pretty exhausted today but I figured you all ought to know about what ‘nano’ is since chances are it’ll get talked about quite a bit on the blog. So brace yourselves. It’s about to get sciency up in here!
Nano is a prefix that means something is 10^-9 or 0.000000001 units (I think that’s the right number of 0’s, I kinda lost count) of something aka suuuuper tiny shit. Usually you hear it used in reference to size (i.e. nanometer). We are talking about things that are only slightly (an order of magnitude for you sciency folks) larger than an atom. Here’s a pretty useful infographic about size.

http://www.asu.edu/clas/csss/NUE/img/Scale-of-Things.jpg – always cite your sources people!
Basically you can look at individual atoms on the nano-scale. Pretty nifty right??
So why do we care? Besides the cool factor. Well materials and shit behave differently when you shrink them down. For example, gold. Everything shown in the image below is pure gold. So why are the vials not gold-colored?

http://blog.manuscriptedit.com/wp-content/uploads/2014/01/Fig-1-gold-macro-vs-nano1.png More citations y’all. Seriously, don’t plagiarize.
Great question! It’s because those vials contain gold nanoparticles in a clear solution. At this the macro scale, gold reflects light along a yellow wavelength. At the nano scale it reflects red! Same material. Different properties!
This doesn’t just go for color. Nanoscale materials have all sorts of different properties than their bulk counterparts. There’s a reason for it, but I won’t go into that today since this is a butt-load of info already.
Right now I’m working with graphene. Sounds like graphite (the stuff in pencils) right? They’re the same material at different sizes. Graphite is a bunch of layers of carbon atoms in a particular pattern (they make hexagons or if you want to sound like a pro – they have a hexagonal lattice). Graphene is basically less than 5 layers of graphite. This pic is one layer of graphene.
Let’s be honest, graphite is not the most exciting material. But when you strip it down to graphene it gets super exciting. It’s crazy strong (100 times stronger than steel by weight), and is both thermally and electrically conductive.
This material was first isolated in 2004 which led to the guys getting a Nobel Prize (“The Nobel Prize in Physics 2010”. The Nobel Foundation.) <—citations y’all. Aka it was a pretty big deal. Also this is a pretty new material. There is a whole world of applications and uses for graphene that are basically the latest and greatest thing to research right now.
- Flexible touch screens
- Drug delivery systems
- Structural supports
- The sky’s the limit!
What would you use graphene for?
Pingback: Nano! Part 2 | PhDeviants